发新帖

阿里云通义开源最强过程奖励PRM模型,7B尺寸比GPT-4o更能发现推理错误 行业新闻

新闻机器人 19天前 7919

1月16日,阿里云通义开源全新的数学推理过程奖励模型Qwen2.5-Math-PRM,72B及7B尺寸模型性能均大幅超越同类开源过程奖励模型;在识别推理错误步骤能力上,Qwen2.5-Math-PRM以7B的小尺寸就超越了GPT-4o。同时,通义团队还开源首个步骤级的评估标准 ProcessBench,填补了大模型推理过程错误评估的空白。

 

阿里云通义开源最强过程奖励PRM模型,7B尺寸比GPT-4o更能发现推理错误

 

在当前大模型推理过程中,不时存在逻辑错误或编造看似合理的推理步骤,如何准确识破过程谬误并减少它,对增强大模型推理能力、提升推理可信度尤为关键。过程奖励模型(Process Reward Model, PRM)为解决这一问题提供了一种极有前景的新方法:PRM对推理过程中的每一步行为都进行评估及反馈,帮助模型更好学习和优化推理策略,最终提升大模型推理能力。

 

基于PRM的理念,通义团队提出了一种简单有效的过程奖励数据构造方法,将PRM模型常用的蒙特卡洛估计方法(MC estimation)与大模型判断(LLM-as-a-judge)创新融合,提供更可靠的推理过程反馈。通义团队基于Qwen2.5-Math-Instruct模型进行微调,从而得到72B及7B的Qwen2.5-Math-PRM模型,模型的数据利用率和评测性能表现均显著提高。

 

阿里云通义开源最强过程奖励PRM模型,7B尺寸比GPT-4o更能发现推理错误

 

在包含GSM8K、MATH、Minerva Math等7个数学基准测试的 Best-of-N 评测中,Qwen2.5-Math-PRM-7B性能表现超越了同尺寸的开源PRMs;Qwen2.5-Math-PRM-72B的整体性能在评测中拔得头筹,优于同尺寸ORM(Outcome Reward Model )结果奖励模型Qwen2.5-Math-RM-72B。

 

同时,为更好衡量模型识别数学推理中错误步骤的能力,通义团队提出了全新的评估标准ProcessBench。该基准由3400个数学问题测试案例组成,其中还包含奥赛难度的题目,每个案例都有人类专家标注的逐步推理过程,可综合全面评估模型识别错误步骤能力。这一评估标准也已开源。

 

阿里云通义开源最强过程奖励PRM模型,7B尺寸比GPT-4o更能发现推理错误

 

在ProcessBench上对错误步骤的识别能力的评估中,72B及7B尺寸的Qwen2.5-Math-PRM均显示出显著的优势,7B版本的PRM模型不但超越同尺寸开源PRM模型,甚至超越了闭源GPT-4o-0806。这印证了过程奖励模型PRM可有效提升推理可靠性,对未来推理过程监督技术的研发提供新思路。

 


 

 


雷峰网版权文章,未经授权禁止转载。

注:本文转载自雷锋网,如需转载请至雷锋网官网申请授权,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如有侵权行为,请联系我们,我们会及时删除。

成都威尔德公司承接各种互联网业务-帮助中小企业转型互联网加- 版权声明 1、本主题所有言论和图片纯属会员个人意见,与成都威尔德公司承接各种互联网业务-帮助中小企业转型互联网加立场无关。
2、本站所有主题由该帖子作者发表,该帖子作者新闻机器人成都威尔德公司承接各种互联网业务-帮助中小企业转型互联网加享有帖子相关版权。
3、成都威尔德公司承接各种互联网业务-帮助中小企业转型互联网加管理员和版主有权不事先通知发贴者而删除本文。
4、其他单位或个人使用、转载或引用本文时必须同时征得该帖子作者新闻机器人成都威尔德公司承接各种互联网业务-帮助中小企业转型互联网加的同意。

这家伙太懒了,什么也没留下。
最新回复 (0)
只看楼主
全部楼主
    • 成都威尔德公司承接各种互联网业务-帮助中小企业转型互联网加
      2
        立即登录 立即注册 QQ登录
返回
免责声明:本站部分资源来源于网络,如有侵权请发邮件(673011635@qq.com)告知我们,我们将会在24小时内处理。